
Horus System V2 Socket.io

Setup
First download the latest Horus Linking Lab from ​http://embed.horus.nu/​. Start Horus Linking
Lab (from here on referenced as HLL). This can take a few seconds, because the software
loads all available components. When the HLL screen appears, select ‘This system’ (this should
be the default) and click ‘Connect’.
Extract the basic-server.tar.gz, change to the extracted directory and run ‘​npm install​’,
followed by ‘​npm start​’. This is the socket.io server that also runs on the Picostreamer. There
is a basic web interface included to test messages and see responses from the system. The
socket.io server listens on port 3105 and does not need authentication.

Minimal pipeline
In HLL, open the Graph Builder. On the left side there is a list of components, on the right is
your canvas. At the top of the screen are buttons to get, set and start/stop the pipeline, save the
pipeline to the remote device (not used in this guide) and to start and stop a recording.
Search for the Socket.io component and drag it onto the canvas. You can filter the components
using the text field above the list to find it more easily.
At the top, first click `SET` to send the pipeline to the backend, then click the play button to start
it. Open the Socket.io web page in your browser at ​http://127.0.0.1:3105/​. At the bottom are
inputs to sent control and data messages. In the control input, type PING and press enter or
click the ‘Send ctrl’ button. At the top you should see a reply from your Horus System V2
prefixed by ‘​[ctrl]​’.
The commands you can send are defined in the
horus.pb.controlmessages.v1.MessageType​ enum in the ​horus-types​ package.

Adding a sensor
Back in the Graph Builder, look for the Timer component. Drag it onto the canvas and select it.
On the right side of the window there should appear a list of Properties for the selected
component. Set the ‘Interval Duration’ to 2 (seconds, fractional values are allowed), ‘Output
Message Type’ to ‘sensor’ and ‘Payload’ to any number you like. Now back on the canvas, the
Timer component should have a circle at the top right. Drag this circle onto the Socket.io
component to connect them. Then SET and start the pipeline and switch back to your browser
to see a message prefixed with ‘​[data]​’ every two seconds.

http://embed.horus.nu/#elf_l1_bGludXgveDY0L0xpbmtpbmdMYWI
http://127.0.0.1:3105/

Adding a toggle
Next, add a toggle component and drag the ‘data 1’ output of the Socket.io component to the
toggle and the ‘Both’ output back to the Socket.io component. Set and start the pipeline and in
the browser enter the following JSON in the ‘Data message’ field:

{"SourceId":"PicoStreamer-client","Commands":[{"MyType":100,"horus.pb.
container.v1.commands.PTZ.ptzCommand":{"Id":"Toggle","ButtonIdPressed"
:["Toggle"]}}]}

Press Enter or click ‘Send data’ and you should get a reply with the new toggle status. Look for
the ​Sensors[].DoubleValue​ field in the JSON message. Every time you send that message,
the value should toggle between 0.0 and 1.0.

JSON explanation

Base message

Key Description

SourceId This identifies where the message came from. When you
receive a message from the backend, this is the name of the
component the message originates from.

Commands Array of commands to send. You can send multiple
commands to multiple components at the same time, as long
as they are connected to the same output of the Socket.io
component

Command

Key Description

MyType The command type. Defined in
horus.pb.container.v1.commands.Ty
pe

horus.pb.container.v1.commands.PTZ.ptzCo
mmand

This is a PTZ command, normally used for
Pan-Tilt-Zoom controllers, but can also be
used for Toggles

horus.pb.container.v1.commands.PTZ.ptzCommand

Key Description

Id The Id of the component you want to send
the command to

ButtonIdPressed When a component has multiple buttons, this
identifies which to activate. The toggle
component responds to any value.

Retrieving the pipeline
The control message GET_PIPELINE retrieves the running pipeline from the backend. Send
this command and analyse the JSON returned. This contains all of the components in your
pipeline, their properties and how they are connected.

Pipeline connection statistics
With the GET_CONNECTION_STATISTICS command you can get statistics about data flow
between components. This returns the packets (messages) per second and bytes per second
transferred between components.

Next steps
In HLL open the Component Browser and read the descriptions of the components to learn
more about them and their properties. Try to add other components to the pipeline and

